
URCD: Unsupervised Root Cause Detection in
Microservices Architecture with HGAN.

Harsh Borse, Utkalika Satapathy, Mainack Mondal, and Bivas Mitra
Indian Institute of Technology Kharagpur, India

harshzf2@kgpian.iitkgp.ac.in, utkalika.satapathy01@kgpian.iitkgp.ac.in, mainack@cse.iitkgp.ac.in, bivas@cse.iitkgp.ac.in

Abstract—The shift from monolithic services to microservices
brings modularity and elasticity, but detecting faults and anoma-
lies is challenging due to diverse data and evolving technology.
The heterogeneous nature of this data complicates the analysis
of anomaly signatures across various dimensions. Given the
continuous evolution of this technology, exhaustively learning
from historical data poses difficulties.

To address these challenges, we present URCD, a solution
designed to identify and localize faults or anomalies at the
application and service level. Remarkably, URCD achieves this
without explicit training on faulty data. Our approach integrates
heterogeneous microservice data into a bidirectional weighted
graph, leveraging a sophisticated Hyper Graph Attention Net-
work (HGAN) model to process heterogeneous data logs gen-
erated by microservices. Our evaluation shows the optimal
performance of URCD while detecting root cause of anomalies.

I. INTRODUCTION

Microservice architecture has emerged as the predominant

trend in the development of cloud-native applications, leading

many companies to transition from traditional monolithic

architectures to the microservices paradigm. Despite concerted

efforts to ensure service quality, microservices systems often

demonstrate fragility, rendering failures unavoidable due to

their inherent complexity and expansive scale. In the literature,

a great number of efforts have been devoted to diagnosing the

failure and locating the root cause.

The conventional methods for root cause detection exhibit

certain limitations, like: (i) Incomprehensive Learning: The

exhaustive learning of all potential functional (code-level)

and non-functional (performance-related) faults or anoma-

lies within a microservices architecture-based application is

deemed impractical. Furthermore, supervised learning meth-

ods encounter challenges related to data imbalance, wherein

the quality and quantity of historical faulty data are limited.

(ii) Heterogeneous Data Handling: In distributed microservices

applications, faults may manifest across various modalities,

including performance monitoring metrics, distributed traces,

and system/application logs. Traditional methods struggle to

effectively harness heterogeneous data.

For example, in Figure 1 fault A and fault B can be classified

as different faults if all the different information from different

modalities is considered. Existing frameworks often focus on

a subset of these modalities, necessitating separate pipelines

for each type of data [1]–[3]. (iii) Additionally, representing

this heterogeneous modalities effectively is essential to avoid

information loss. Taking one modality example, a trace can

be breakdown into the pre-processing, waiting time, and post-

processing time of the request. Figure 2 represents traces

for four different request with their heath state in traditional

and our breakdown format, where we can observe that the

detailed breakdown of latency can help us locate the faulty

part efficiently compared to traditional representation (wait

time fault in R4) [4], [5].

Fig. 1. Modalities behaviour with
faults occurrence (red)

Fig. 2. Latency representation
of four request

In our research paper, we present URCD, a novel framework

for root cause detection in microservices architectures. URCD

leverages heterogeneous data logs without explicit training on

anomalous data, utilizing an unsupervised approach to detect

both functional and non-functional anomalies. The features in

each modality are correlated with each other and different

features can be used to estimate a particular feature under

specific conditions. The framework combines heterogeneous

data sources into unified graph structures for each user

request. These graphs are then fed into a combination of

complex HGAN and feedforward networks, focusing on each

modality’s attributes and the relationship between them. By

analyzing reconstruction errors during feature estimation with

the aid of learned relationships, URCD effectively identifies

root causes at the application and service levels. Our eval-

uation on several major faults and anomalies encountered in

microservices architecture demonstrates URCD’s effectiveness

in root cause detection [4]–[6].

II. DATASET AND PROBLEM DEFINITION

A. System Design and Data Collection

Applications: We developed two microservices applica-

tions, library and Ecom (Ecommerce), to represent varying

levels of complexity. The library app has five microservices,

while Ecom has twelve. They offer different levels of in-

teraction between microservices, providing a comprehensive

testbed for our research. A detailed Figure 3 presents a flow

diagram of these micro-services for library app. A sample

1423

2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/24/$31.00 ©2024 IEEE
DOI 10.1109/ICDCS60910.2024.00137

20
24

 IE
EE

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
ist

rib
ut

ed
 C

om
pu

tin
g

Sy
st

em
s (

IC
DC

S)
 |

 9
79

-8
-3

50
3-

86
05

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DC
S6

09
10

.2
02

4.
00

13
7

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. library system design (detailed)

user request (ri) with library app is also represented in

Figure 4.

Modalities: Our objective is to gather various types of

data/logs with functional and non-functional faults. Specifi-

cally, we focus on four main types of data: Traces, perfor-

mance metrics, application logs and system calls.

(a) Traces: In the context of a microservice system, a trace

encapsulates the execution process of a request across different

service instances, forming a service invocation chain. Figure 4

illustrates an example of trace for a user request for an insert

operation which involves three microservices.

(b) Performance metrics: To track resource utilization,

these metrics include performance indicators and resource uti-

lization metrics like CPU%, wait%, RSS, MEM%, iodelay
etc. Each microservice and its respective host generate these

metrics in a time-series format and store them within the host.

(c) Application Logs: Logs provide detailed information

about the application’s operations, and user activities in semi-

structured text format. We mine categorical and numerical data

from the logs. In a distributed system architecture, for a user

request ri each microservice generates a unique log entry (Li
v

∀v∈V , where V = set of microservices) which is stored in the

host system log storage.

(d) Systemcalls: We collect all the system calls made by

the services for processing a request. We counter the challenge

of collecting and ensuring casual ordering of the system

call in a distributed system with eBPF based tool. For each

request ri, each microservice generates set of system calls

Qv = {q1, q2....qn}
Faults: Additionally, we introduce both non-functional

and functional anomalies into different microservices. The

Fault Description #Request
F0 Normal requests with no faults 66332
F1 microservices increased the compute consumption internally 40100
F2 Zombie process eating unnecessary resources in host system m 56420
F3 Complexity increased in microservice before sending a request 50800
F4 Complexity increased in microservice after receiving a response 51200
F5 Write access to a file is revoked 50100
F6 Database queries issue with relational database 48500

TABLE I
FAULTS AND THEIR DETAILS

Fig. 4. Example of trace and parent-child relation of a span for insert book
record operation in library system

specifics of these anomalies and the associated information

are also described in Table II-A. We run the workload simu-

lating real-world user interaction with each of the anomalies

(F = {F0, F1, F2, F3, F3, F4, F5, F6}) injected in different

microservices and collect the desired data and logs [7].

B. Problem Definition

Consider a micro-services system consisting of |V | micro-

services (V = {m1,m2,m3..mv}). A microservice mx in

the system have n features representing its attributes K =
{k1, k2...kn} from different modalities. A microservice mx

may face anomalies in system attributes Ka ⊂ K. We

aim to develop a framework, which can detect root cause

microservices mx ∈ V having a fault in attributes Ka ⊂ K
and output the resultant tuple (mx,Ka).

III. METHODOLOGY

In this section, we detail the development process of URCD,

which comprises several key stages. Initially, we address

the challenge of managing heterogeneous microservices data

by converting it into a unified graph format. Subsequently,

our emphasis lies in training a combination of HyperGraph

Attention Network and a set of FeedForward networks in an

unsupervised setting to effectively learn the intricate depen-

dencies among these components. The feedforward networks

are responsible for reconstructing system attributes. Analyzing

errors in the reconstructed values offers insight into root

causes.

A. Graph construction
We integrate diverse data sources from microservices into a

unified graph structure for comprehensive analysis. Nodes rep-

resent microservices and hosts, edge weights contain latency

based properties and edge attributes represent the system calls

information, and node features are derived from performance

metrics and app logs.

1) Node-Edge formation: To represent each user request in

the form of a graph, each node represents a microservice and a

host, edges between them represent the call sequence between

the microservices. For this, we use trace data collected for

each user request.

Consider a user request ri (Figure 5(b)), from which

we construct the directed graph gi = {V,E}, where V
represents the micro-services as nodes which were called

during the execution of request ri, and E represents the

1424

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. URCD Pipeline and graph formation from trace.

edge between two micro-services if they had commu-

nicated directly with each other for request ri. V =
{m1,m2,m3} is the set of nodes in the graph and E =
{e1 = (m1,m2), e2 = (m2,m3), e3 = (m3,m2), e4 =
(m2,m1), e5 = (m1,m1), e6 = (m2,m2), e7 = (m3,m3)} is

the set of edges between the nodes. The direction of edges

between the nodes is decided by established definitions of

edge types in Table II. We represent the weights (latency)

between two nodes as an edge weight vector as Ea = {e1 =
[|t2− t1|], e2 = [|t3− t2|], e3 = [|t4− t3|], e4 = [|t6, t5|], e5 =
[|t5, t2|,], e6 = [|t4, t3|], e7 = [|t4, t3|]}. At the end of this, we

will obtain graph gi = {V,E,Ea} for request ri.

2) Node feature extraction: To incorporate the information

extracted from the application logs into our analysis, we

encode the categorical values with a one-hot encoder and use

numerical values as it is. We create a vector representation

Li
v(v ∈ V) of dimension 1×|L| for each user request ri. Next,

we extract the microservice and host-level running status. To

incorporate this information into the Graph, we consider the

performance metrics generated by each micro-service mv ∈ V
and its corresponding host system sv ∈ S, represented as

a vector of dimension 1 × |A| (A = set of metrics). We

also concatenate the log vectors with node features vectors

Xi
v = Xi

v ⊕ Li
v∀v∈V .

We collect this concatenated vectors Xi
v from each micro-

services where v ∈ V and stack them to create node attribute

matrix Xi, (where Xi = ∪v∈V X
i
v) with dimensions |V |×|A|.

Xi serves as the node feature in the constructed Feature Graph

for request ri which gives us gi = {V,E,Ea,X}.
3) Edge-feature extraction: To integrate the edge feature,

capturing the sequence of events leading to edge formation,

Edge Type Definition Example

Forward Edge
For a request ri, MSx calls MSy .

It is the time taken by MSx to process
request ri before calling MSy .

(T2-T1)
(T3-T2)

Backward Edge
For a request ri, MSy responds to MSx.

It is the time taken by MSx to process request
ri after receiving response from calling MSy .

(T6-T5)
(T5-T4)

Wait Edge
For a request ri, MSx waiting.

It is the waiting time for MSx for request ri
between calling and receiving response from MSy .

(T5-T2)
(T4-T3)

Execution Edge
For a request ri, MSz is final execution.

It is the execution time for MSz for
request ri and no further MS are called

(T4-T3)

TABLE II
EDGE TYPES AND DEFINITIONS (REFERENCE WITH FIG. 5(B)

we leverage system call logs associated with a specific user

request ri. These logs for ri, denoted as Q∗ = ∪v∈V Qv , where

Qv are divided into two subsets: system calls made prior to

sending the request to the subsequent microservice, denoted

as Qf
v , and system calls made subsequent to receiving the

response, denoted as Qb
v . We map these subsets to forward

(Qf
v) and backward (Qb

v) edges corresponding to a node. We

depict system calls using a vector representation. Each column

of this vector corresponds to a system call, and the value within

each column corresponds to the return value of that system

call. Importantly, the order of system calls in the vector mirrors

their causal ordering. This gives us gi = {V,E,Ea,X,Q∗}

B. Node embedding from Hypergraph

To efficiently learn embeddings on the high-order graph-

structured data, we utilise state of the art Hypergraph Con-

volution network to generate the node embeddings. Where

each node embedding represents a unique signature of a

microservice. This hyper Graph Convolutional network has

the ability to generate node embeddings while aggregating the

Egde Features and Egde weights along with Node features for

better learning of signatures [8].

For a graph g, Q∗ is the Edge features and A is the

adjacency matrix derived from E. H is the aggregated Edge

features matrix (Step 1: Aggregation of Edge Features). Then

H is updated with Ea, which is the edge weight vector (Step

2: Weighted Aggregation), representing the weight associ-

ated with each edge. X is the Node feature matrix and Z
is the concatenated feature matrix(Step 3: Concatenation of

Node Features and Aggregated Edge Features). Z is passed

through HyperGraphConv() operation to generate the Node

embeddings (Step 4: Convolution Operation). The following

represents the operations for generating node embedding:

H = Q∗ ·A (Step 1)

Hij = Hij × Eaj (Step 2)

Z = [X,H] (Step 3)

X ′ = HypergraphConv(Z) (Step 4)

1425

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

C. Graph Reconstruction

Here, our aim is to reconstruct the original graph. Hence we

break this down into three parallel phases to reconstruct the

Node feature, Egde weights and Edge features. For this, we

utilise the conventional encoder-decoder technique where we

replace the encoder with the Hypergraph convolutional net-

work and decoder with a set of feed-forward neural networks.

Node features: From the node features generated with

the HyperGraphConv() X ′, we train the nodes feed-forward

networks to reconstruct the node features X . Specifically, we

train the FFNNode
i for each node with corresponding node

embedding X ′
i and reconstruct node feature Xi.

Edge weights: Edge weights are correlated with node

features in microservices architecture, hence we utilise the

rich node embedding and concatenate them with edge weights,

Wi = Xi⊕Wi. For each edge, we train the feed-forward net-

work FFNEdge weights
i with Wi to reconstruct edge weight

Wi.

Edge features: To reconstruct the edge features, we train

the edge feed-forward networks to reconstruct the edge fea-

tures Q∗. Specifically, we train the FFNEdge feature
i in a

simple encoder-decoder style to reconstruct the original edge

feature Q∗.

D. Root cause detection

We utilize the reconstructed graph obtained from the pre-

vious step to pinpoint the root cause of the anomaly. The

attributes across modalities exhibit correlations, indicating hid-

den relationships between different attribute sets. Employing

feed-forward networks, we learn these relationships, whether

causal or otherwise. By analyzing the reconstructed values

of each feature, we detect deviations from their original

values. Specifically, we gather the reconstructed error for each

attribute within the reconstructed graph and identify the top-k

values with the highest reconstruction error. If the root cause

is among the top-k results returned, we classify it as a true

positive case in the root cause detection process.

IV. EVALUATION

In this section, we conduct a performance evaluation of

URCD.

(i) Table III, shows the accuracy of URCD on functional

and non-functional anomalies. Our framework can detect faults

manifesting in different modalities, with minimal variations

among them (top k, where k = 3), due to URCD’s capability

to harness the diverse heterogeneous data logs simultaneously

produced by microservices.

Anomalies library Ecom
F0 99.8% 99.1%
F1 99.4% 95.2%
F2 99.5% 91.8%
F3 99.1% 90.5%
F4 99.5% 94.6%
F5 99.6% 92.4%
F6 99.3% 95.3%

Avg. 99.4% 94.1%
TABLE III

ANOMALY-WISE ACCURACY.

Microservices type #services Accuracy
User facing 4 96%
Intermediate 6 95%

Data management 2 91%

TABLE IV
MICROSERVICES VISE PERFORMANCE

(ECOM).

(ii) In Table IV, we show the root cause detection accuracy

of different types of microservices categories for library app

. URCD struggles with data management services as these

services are usually called by many services simultaneously

hence its health status becomes difficult to generalise.

(iii) We conducted ablation study of performance URCD

of with varying modalities and feature. Through Figure 6 we

can see that URCD is able to perform even with subset of

the modalities, but using only a subset of modalities URCD

performance decreases as the faults can be manifested in any

modality.

(iv) In Figure 7, we also show the advantage of our unique

graph construction method comparing to traditional graph for-

mation method, i.e. latency based, where edges are represented

with aggregated latency and causality based, where edges are

based on call sequence.

Fig. 6. Modality effect on
URCD

Fig. 7. Graph generation effect

V. CONCLUSION

In conclusion, URCD proves its efficacy as a robust frame-

work for anomaly detection and root cause analysis within

microservices systems. Through the integration of diverse data

sources, including traces, performance metrics, application

logs, and system calls, URCD offers a comprehensive insight

into system behavior and facilitates the identification of poten-

tial anomalies without explicitly being trained with anomalous

data. Its adeptness in addressing both non-functional and

functional anomalies across various heterogeneous modalities

renders URCD suitable for a broad spectrum of applications.

REFERENCES

[1] O. Kalinagac, W. Soussi, and G. Gür, “Graph based liability analysis for
the microservice architecture,” in 2022 18th International Conference on
Network and Service Management (CNSM), 2022, pp. 364–366.

[2] Y. Chen, N. Chen, W. Xu, L. Lian, and H. Tu, “Mfrl-ca: Microservice
fault root cause location based on correlation analysis,” in 2021 8th
International Conference on Dependable Systems and Their Applications
(DSA), 2021, pp. 90–101.

[3] M. Ma, W. Lin, D. Pan, and P. Wang, “Servicerank: Root cause iden-
tification of anomaly in large-scale microservice architectures,” IEEE
Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3087–3100, 2022.

[4] H. X. Nguyen, S. Zhu, and M. Liu, “A survey on graph neural networks
for microservice-based cloud applications,” Sensors, vol. 22, no. 23, 2022.

[5] J. Soldani and A. Brogi, “Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey,” ACM
Comput. Surv., feb 2022.

[6] J. Soldani and D. Andrew, “The pains and gains of microservices: A
systematic grey literature review,” Journal of Systems and Software, 2018.

[7] X. Zhou, X. Peng, and Xie, “Fault analysis and debugging of microservice
systems: Industrial survey, benchmark system, and empirical study,” IEEE
Transactions on Software Engineering, 2021.

[8] S. Bai, F. Zhang, and P. H. S. Torr, “Hypergraph convolution and
hypergraph attention,” 2020.

1426

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:52:09 UTC from IEEE Xplore. Restrictions apply.

