
OPERATING SYSTEM

25 Aug 2025

Department of Computer Science
and Engineering

1

International Institute of
Information Technology,
Bhubaneswar

System Call & Interrupt

Utkalika Satapathy
utkalika@iiit-bh.ac.in

mailto:utkalika@iiit-bh.ac.in

2

Topics to be covered

01 - System Calls

02 - Interrupts

03 - Process

3

Recap

● How to protect concurrent processes from one another?
○ Can one process mess up the code or data of another process?
○ When we virtualize, how do we share safely?

● Modern CPUs have mechanisms for isolation

● Privileged and unprivileged instructions

○ Privileged instruction access (perform) sensitive information
(actions)

○ Regular instructions (e.g., add) are unprivileged

● CPU has multiple modes of operation (Intel x86 CPUs run
in 4 rings)

○ Low privilege level (e.g., ring 3) only allows unprivileged instructions
○ High privilege level (e.g., ring 0) allows privileged instructions also

4

User Mode and Kernel Mode

● User programs runs in user (unprivileged) mode
○ CPU is in unprivileged mode, executes only unprivileged instructions
○ permits only a subset of the instructions to be executed and a subset of the features to be

accessed

● OS runs in kernel (privileged) mode
○ CPU is in privileged mode, can execute both privileged and unprivileged instructions
○ When running in kernel mode, the CPU can execute every instruction in its instruction set and

use every feature of the hardware.

● CPU shifts from user mode to kernel mode and executes OS code when
following events occur (Trap Instructions):
○ System calls: user request for OS services
○ Interrupts: external events that require attention of OS
○ Program faults: errors that need OS attention

● After performing required actions in kernel mode, OS returns back to user
program, CPU shifts back to user mode

5

User Mode and Kernel Mode

● Process Status Word (PSW), the register contains the condition code bits,
which are set by comparison instructions, the CPU priority, the mode (user or
kernel), and various other control bits.

● User programs may normally read the entire PSW but typically may write only
some of its fields.

● The PSW plays an important role in system calls and I/O

● Example: Setting the PSW mode bit to enter kernel mode - Privileged or
Unprivileged?

6

System Calls

● When user program requires a service from OS, it makes a system call (syscall)
○ Example: Process makes system call to read data from hard disk
○ Why? User process cannot run privileged instructions that access hardware, to prevent one user

from harming another
○ CPU jumps to OS code that implements system call, and returns back to user code after system

call completes

● Hence, to obtain services from the OS, a user program must make a system call,
which traps into the kernel and invokes the operating system.

● The TRAP instruction switches from user mode to kernel mode and starts the
operating system.

● When the work has been completed, control is returned to the user program at
the instruction following the system call.

7

System Calls

● Normally, user program does not call system call directly, but uses language
library functions
○ Example: printf is a function in the C library, which in turn invokes the system call to write to

screen
○ https://man7.org/linux/man-pages/man2/write.2.html

https://man7.org/linux/man-pages/man2/write.2.html

8

Some of the components of a simple personal computer

9

I/O Devices and Device Drivers

● Apart from the CPU and memory, I/O devices also interact heavily with the OS.

● Every I/O devices generally consist of two parts: a controller and the device
itself (shown in previous slide).

● The controller is a chip or a set of chips that physically controls the device.
● It accepts commands from the OS, for example, to read data from the device,

and carries them out.
● Because each type of controller is different, different software is needed to

control each one.
○ The software that talks to a controller, giving it commands and accepting responses, is called a

device driver.
○ Each controller manufacturer has to supply a driver for each operating system it supports.

● Example - A scanner may come with drivers for OS X, Windows X, and Linux etc.

● To be used, the driver has to be put into the operating system so it can run
kernel mode.

10

I/O Devices and Device Drivers

● Every controller has a small number of registers that are used to communicate
with it.

● For example, a minimal disk controller might have registers for specifying the
disk address, memory address, sector count, and direction (read or write).

● To activate the controller, the driver gets a command from the operating
system, then translates it into the appropriate values to write into the device
registers.

● The collection of all the device registers forms the I/O port space (Details will
cover later)

11

I/O Processing

Busy Waiting

(Polling)01
● User program makes system call → kernel translates into a procedure call for

the respective driver

● Driver starts I/O and continuously polls device status (indicated by some bit)

● CPU remains tied up until I/O completes

● Disadvantage: Wastes CPU cycles

Interrupt

Driven02
● Driver starts device and requests interrupt when done

● Driver returns immediately, OS blocks caller

● Controller generates interrupt upon completion

● Advantage: CPU free for other tasks while waiting

Direct

Memory

Access

(DMA)

03

● Special DMA chip controls data flow between memory and device

● CPU sets up DMA with: Number of bytes to transfer, Device and memory

addresses, Transfer direction

● DMA operates independently without CPU intervention

● DMA generates interrupt when transfer complete

● Advantage: Frees CPU from data transfer overhead

12

Interrupts

● In addition to running user
programs, CPU also has to handle
external events (e.g., mouse
click,keyboard input)

● Interrupt = external signal from I/O
device asking for CPU’s attention

● Example: program issues request
to read data from disk, and disk
raises interrupt when data
isavailable (instead of program
waiting for data)

13

Interrupt Handling

1

3

24

Driver Commands Controller
● The driver tells the controller what to do by

writing into its device registers
● Controller starts the device operation

Controller Signals Completion
● Controller finishes data transfer (reading or

writing the number of bytes)
● Signals interrupt controller via bus lines

Interrupt Controller Notifies CPU
● Interrupt controller checks priority and

availability
● Asserts CPU pin if ready to handle interrupt

Device Identification
● Interrupt controller puts device number on bus
● CPU reads device ID to identify which device

finished
● Enables handling of multiple concurrent devices

1

2

3

4

14

Interrupt Handling

1

3

24

Driver Commands Controller
● The driver tells the controller what to do by

writing into its device registers
● Controller starts the device operation

Controller Signals Completion
● Controller finishes data transfer (reading or

writing the number of bytes)
● Signals interrupt controller via bus lines

Interrupt Controller Notifies CPU
● Interrupt controller checks priority and

availability
● Asserts CPU pin if ready to handle interrupt

Device Identification
● Interrupt controller puts device number on bus
● CPU reads device ID to identify which device

finished
● Enables handling of multiple concurrent devices

1

2

3

4● Once the CPU has decided to take the interrupt, the program counter
and PSW are typically then pushed onto the current stack and the CPU
switched into kernel mode.

● The device number may be used as an index into part of memory to
find the address of the interrupt handler for this device.

● This part of memory is called the interrupt vector.

15

Interrupt Processing Flow

Normal program execution is interrupted

Control transfers to interrupt handler routine

Handler completes, execution resumes at next instr

The processor state is saved and restored
automatically

16

Interrupt Handling Process

1. How are interrupts handled?
a. CPU is running process P and interrupt arrives
b. CPU saves context of P, runs OS code to handle interrupt (e.g., read keyboard

character) in kernel mode
c. Restore context of P, resume P in user mode

2. Interrupt handling code is part of OS
a. CPU runs interrupt handler of OS and returns back to user code

17

Interrupt Handling Process

1. Device completes its I/O operation
2. Controller sends interrupt signal
3. CPU Save current state
4. CPU jumps to the Interrupt handler
5. Handler processes the interrupt
6. CPU Restores save data
7. Resume normal execution

18

System calls vs. interrupts

System call

19

20

Next Class We Will Talk About

● Process States
● Operations with examples from UNIX (fork, exec) and/or Windows.
● Process scheduling

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and
infographics & images by Freepik

Please keep this slide for attribution

21

Happy
Learning !

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

