OPERATING SYSTEM

22 Aug 2025

Introduction & Background

Department of Computer Science
and Engineering

Device drivers

Applications

BHUBANESWAR

International Institute of

Information Technology, Utkalika Sata pathy
Bhubaneswar utkalika@iiit-bh.ac.in

mailto:utkalika@iiit-bh.ac.in

Topics to be covered

01 - What happens on a function call ?

02 - Role of OS in running a process

03 - Concurrent execution & CPU virtualization
04 - Context Switching

05 - User Mode and Kernel Mode

06 - System Calls

07 - Interrupts

What happens on a function call ?

e Function arguments allocated on stack e putda "
(in reverse order, by convention) 4 Local var
e Old PC (return addr) pushed on stack, et adds e
PC jumps to function code <
. Arg1l
e Local variables allocated on stack St i *
pushed when
e Some register context saved too (more function is
invoked
late r) Old top of stack . ArgN
® Now, new stack frame is ready on stack "]
e Function code runs using data on stack
e When function returns, all of the
function memory is popped off the B i s
ocal variables: Function's loc: ata Tames an ata
St a C k Return address: Where to return after call
Arguments: Parameters passed to function
Previous frames: Earlier function calls

Address space of a process

® OS gives every process the illusion that its memory image is laid out

contiguously from memory address O onwards
o This view of process memory is called the virtual address space

® Inreality, processes are allocated free memory in small chunks all over RAM

at some physical addresses, which the programmer is not aware of
o Pointer addresses printed in a program are virtual addresses, not physical

® When a process accesses a virtual address, OS arranges to retrieve data from
the actual physical address

e OS virtualizes memory for all processes, gives illusion of a virtual address
space to processes

0KB

1KB

2KB

15KB

16KB

Process Memory Address Space Layout

Program Code
(Text Segment)

Heap

(Dynamic Memory)

l grows downward

(free)

grows upward]

Stack

(Local Variables)

Code Segment:

Contains executable instructions
Program machine code
Read-only, fixed size

Heap Segment:

Dynamic memory allocation
malloc(), new, calloc()
Grows toward higher addresses

Free Space:

Available memory between
heap and stack
Can be allocated to either

Stack Segment:

Local variables and parameters
Function call frames
Grows toward lower addresses

Code Segment: Fixed at program
load time

Heap: Managed by Malloc/Calloc
and new/delete

Stack: Automatically managed by
functions

Virtual Memory allows each
process to have its own address
space

Role of OS in running a process

® Allocates memory for new

) CPU
process in RAM Registers
. r Cache
o0 Loads code, data from disk R /
eXGCUta b I e to run process \. J
o Allocates memory for stack, heap I
~ ™ trans
ESNT RAM
® |Initializes CPU context g
o PC points to first instruction 2. Create & init /‘
e proses - b Execution Steps
. Process Sta rts to run ® [oad program from disk
. . @® Create process in memor
o CPU runs user instructions now e

® Execute instructions

o OSis out of picture, but steps in later :r';:j‘l‘i‘s:i““y

as needed into RAM

OS manages this entire process

Executable file loaded from storageinto main memory

Concurrent execution & CPU virtualization

® CPU runs multiple programs concurrently
o OSruns one process for a bit, then switches to another, switches again, ...

® How does OS ensure correct concurrent execution?

o Run user code of process A for some time

o Pause A, save context of A, load context of B: context switching
o Run user code of process B for some time

o Pause B, save context of B, restore context of A, run A

® Every process thinks it is running alone on CPU
o Saving and restoring context ensures process sees no disruption

® In this manner, OS virtualized CPU across multiple processes

® OS scheduler decides which process to run on which CPU at what time

Context Switching

Process A Process B
1
. 1
Time 1
|
1
User code Context
switch
read \
Kernel code \
]
|
User code Context
switch
I
|}
Disk interrupt I
1
Kernel code
[
1
Return 1
from read 1
User code v Context
switch
v T
Execution Context Process Execution
User mode (application code) Kernel mode (system code) Il Process A running Bl Process B running

Next Class We Will Talk About

® Process States
e Operations with examples from UNIX (fork, exec) and/or Windows.
® Process scheduling

Happy
Learning!

i

:‘r‘l\-\

e
,-.—"" -‘A

?hl ﬁE;:F]

nnt ..E!!gs
; . lll"!ll{ r

2 LEE T Bhuba
3 S p!“‘) L ‘: '
e — Pt
- - 5
) gty T e - -

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

