OPERATING SYSTEM

20 Aug 2025

Introduction & Background
Department of Computer Science

and Engineering
® @

BHUBANESWAR

International Institute of

Information Technology, Utkalika Sata pathy
Bhubaneswar utkalika@iiit-bh.ac.in

mailto:utkalika@iiit-bh.ac.in

Topics to be covered

01 - Hardware Organization

02 - CPU ISA (Instruction Set Architecture)
03 - Memory/Storage Hierarchy

04 - Parts of Program Memory

05 - Memory Allocation

06 - Pointers and addresses

07 - Stack vs Heap

Hardware Organization

CPU
e mm e
! l
: I
|
| Register file : .
! I | executable loaded in
: PC / I | - | —_— ALU I System bus Memory bus memory when program
! ; runs
1
I
| D e = > /0 Lo > Main
: | { —————— bridge [= === —— memory
I I :
: I
' I
1
1 Bus interface :
1
! I
T I
/O bus Expansior} slots for
other devices such
as.netwark adanters
USB Graphics Disk
controller adapter controller
MouJe Kelboard Display

hello executable
stored on disk

CPU ISA (Instruction Set Architecture)

® Every CPU has a well-defined set of
o Instructions that the hardware can execute
o Registers for temporary storage of data within the CPU

® Instructions and registers specified by ISA = Instruction Set Architecture
o Specific to CPU manufacturer (e.g., Intel CPUs follow x86 ISA)

® Registers: special registers (specific purpose) or general purpose
o Program counter (PC) is special register, has memory address of the next instruction to
execute on the CPU
o General purpose registers can be used for anything, e.g., operands in instructions

e Size of registers defined by architecture (32 bit / 64 bit)

CPU instructions

® Some common examples of CPU instructions
o Load: copy content from memory location register
o Store: copy content from register memory location
o Arithmetic and logical operations like add: regl + reg2 reg3, compare, ..
o Jump: change value of PC
o (Call: invoke a function
e Simple model of CPU
o Each clock cycle, fetch instruction at PC, decode, access required data, execute, update PC,
repeat
o PCincrements to next instruction, or jumps to some other value

® Many optimizations to this simple model
o Pipelining: run multiple instructions concurrently in a pipeline
o Many more in modern CPUs to optimize #instructions executed per clock cycle

Memory/Storage Hierarchy

CPU Memory Module Slots
® Program executable loaded from - - o

secondary storage to main memory

RO

R1

DDR4 8GB
DDR4 8GB

R2

R3

® When CPU runs program,recently
accessed instructions and data

Total: 5GB RAM]

CPU Cache (L1/L2/L3)

stored in CPU caches(faster access) MemoryBus
than DRAM)
w0
® Registers in CPU provide temporary “aon
storage, e.g.,hold operands /0 Bus (PCle 4.0) et

CPU Speed: z
16l61/s Cache: 32MB

RAM: 16GB

Memory BW: 512 GB/s
SATA 3.0 USB 32 NVMe Ethernet PCle Lanes:20
Controller Controller Controller Controller

! Secondary Storage Devices

__

Memory/Storage Hierarchy

e Hierarchy of storage elements which store instructions and data
CPU registers (small number, accessed in <1 nanosec)

o Multiple levels of CPU caches (few MB, 1-10 nanosec)

o Main memory or RAM (few GB, ~100 nanosec)

o Hard disk (few TB, ~1 millisec)

@)

e Hard disk is non-volatile storage, rest are volatile
o Hard disk stores files and other data persistently

® Asyou go down the hierarchy, memory access technology becomes cheaper,
slower, less expensive

® CPU caches transparent to software, managed by hardware
o Software only accesses memory, doesn’t know if served from cache or DRAM

Memory/Storage Hierarchy

N —_
-
£y On CPU
=R
= Caches ~10 cycles Primary
(L1,L2,L3) Storage
(Volatile)

O °
<
g s ~1M cycles
RS
-2

w

ndary
Traditional Disk £ ~10M cycles

(HDD)

Typical Specs
. Registers: 64-bit

L1 Cache: 32-64 KB
L3 Cache: 8-32 MB »
RAM: 8-64 GB Storage Capacity

Memory/Storage Hierarc

/RPN Swissbit”
UEUSSSOREEPIR o
it PR —

Memory/Storage Hierarchy

Register Cache RAM Flash Disk Hard Disk

10

Parts of Program Memory

® The memory of a running program in DRAM has the following components
o Compiled code (instructions)
o Compile-time data (global/static variables)
o Runtime data on stack (function arguments,local variables, ...)
o Runtime data on heap (dynamically allocated memory via mallog, ...)

e All instructions and data are assigned memory addresses, based on their
location in memory

e Main memory contains user programs + code/data of OS

1

Memory addresses

Address
0:
1;

max:

Parts of Program Memory

Operating System

Kernel space, system calls, drivers

Code:

function instructions stored here
(Text segment - executable instructions)

Data:

global variables stored here
(Initialized and uninitialized global data)

Heap:
dynamically allocated memory
grows as program allocates memory

(malloc, new, dynamic arrays)

grows down

local variables and parameters stored here

Grows as program calls functions
Shrinks on return from function

(Function calls, local vars, return addresses)

Memory Properties

Code:
* Read-only
« Fixed size

Data:

* Read/Write

* Fixed size
Heap:

* Dynamic size
* Manual control
Stack:

* Auto managed
o LIFO strncture

Typical Sizes

Code: 1-100 MB
Data: 1-10 MB
Heap: 0-GB range
Stack: 1-8 MB

*varies by program

Virtual Memory
Each process has
its own address

space layout

12

When is memory allocated for the

various parts of this program?
o Memory for global variable “g” allocated
when ?

o Memory for function arguments and local

variables (a, b, x,y, z, ...) ?

int g;
int increment(int a){
int b;
b=a+1;
return b;
}
main (){
int x, y;
X =1;
y = increment(x);
int *z = malloc(40);
}

Example: Memory Allocation

13

Example: Memory Allocation

e When is memory allocated for the int g;
various parts of this program?
o Memory for global variable “g” allocated int increment (int a) {
when executable loaded into memory at . .
. int b;
start of execution .
o Memory for function arguments and local b =a+1,
variables (a, b, x,y, z, ...) allocated return b ;
(“pushed”) on stack when the }
corresponding function is called
e Why not allocate memory at start of .
, main (){
programs .)
int X, vy;
X =1;
y = increment(Xx);

int *z = malloc(40);

14

When is memory allocated for the

various parts of this program?

o Memory for global variable “g” allocated
when executable loaded into memory at
start of execution

o Memory for function arguments and local
variables (a, b, x,y, z, ...) allocated
(“pushed”) on stack when the
corresponding function is called

Why not allocate memory at start of
program?
o Because we do not know if/how many
times the function will be called at runtime

o Function variables “popped” from stack
when function returns

Memory requested dynamically via
malloc is allocated on the heap at
runtime, when malloc is invoked

int g;
int increment(int a){
int b;
b=a+ 1;
return b;
}
main (){
int x, y;
X =1;
y = increment(Xx);

int *z = malloc(40);

Example: Memory Allocation

15

Pointers and addresses

® A pointer variable contains the memory address of another variable

® Note that these addresses are only logical addresses, and not the actual
physical addresses in DRAM (why? Will cover later)

® Pointer variables contain space to only store the address, and the variable
being pointed to must be declared/allocated separately

® Ensure pointer contains valid address before accessing it

/* Assuming an integer named x has already been declared, this code sets the value
of x to 8. */

ptr = &x; /* initialize ptr to the address of x (ptr points to variable x) */
ptr = 8; / the memory location ptr points to is assigned 8 */

ptr: Addr of x X® 8

16

Stack vs Heap

® Functions like malloc allocate IE AT
char *c_arr;

memory on heap and return start
address of allocated chunk

® This heap address is stored in a
pointer variable, which may be a
local variable in a function, and
hence located on the stack 8 1 2 --- 19

e Dynamically allocated memory
onheap must be explicitly freed up /
(in languages like C), else memory ptr: | Addr of heap [] o)

leak g
o Stack memory automatically c.arr: | Addr of heap r
popped when function returns

/* allocate an array of 20 ints on the heap*/
arr = malloc(sizeof(int) * 20);

/* allocate an array of 10 char on the heap*/
c_arr = malloc(sizeof(int) * 10);

\

Stack Heap
17

Next Class We Will Talk About

e What happens on a function call ?

® Role of OSin running a process

e Concurrent execution & CPU virtualization
e Context Switching

® User Mode and Kernel Mode

e System Calls

® |nterrupts

18

Happy
Learning!

i

:‘r‘l\-\

e
,-.—"" -‘A

?hl ﬁE;:F]

nnt ..E!!gs
; . lll"!ll{ r

2 LEE T Bhuba
3 S p!“‘) L ‘: '
e — Pt
- - 5
) gty T e - -

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

