
OPERATING SYSTEM

20 Aug 2025

Department of Computer Science
and Engineering

1

International Institute of
Information Technology,
Bhubaneswar

Introduction & Background

Utkalika Satapathy
utkalika@iiit-bh.ac.in

mailto:utkalika@iiit-bh.ac.in

2

Topics to be covered

01 - Hardware Organization

02 - CPU ISA (Instruction Set Architecture)

03 - Memory/Storage Hierarchy

04 - Parts of Program Memory

05 - Memory Allocation

06 - Pointers and addresses

07 - Stack vs Heap

3

Hardware Organization

executable loaded in
memory when program
runs

4

CPU ISA (Instruction Set Architecture)

● Every CPU has a well-defined set of
○ Instructions that the hardware can execute
○ Registers for temporary storage of data within the CPU

● Instructions and registers specified by ISA = Instruction Set Architecture
○ Specific to CPU manufacturer (e.g., Intel CPUs follow x86 ISA)

● Registers: special registers (specific purpose) or general purpose
○ Program counter (PC) is special register, has memory address of the next instruction to

execute on the CPU
○ General purpose registers can be used for anything, e.g., operands in instructions

● Size of registers defined by architecture (32 bit / 64 bit)

5

CPU instructions

● Some common examples of CPU instructions
○ Load: copy content from memory location register
○ Store: copy content from register memory location
○ Arithmetic and logical operations like add: reg1 + reg2 reg3, compare, ..
○ Jump: change value of PC
○ Call: invoke a function

● Simple model of CPU
○ Each clock cycle, fetch instruction at PC, decode, access required data, execute, update PC,

repeat
○ PC increments to next instruction, or jumps to some other value

● Many optimizations to this simple model
○ Pipelining: run multiple instructions concurrently in a pipeline
○ Many more in modern CPUs to optimize #instructions executed per clock cycle

6

Memory/Storage Hierarchy

● Program executable loaded from
secondary storage to main memory

● When CPU runs program,recently
accessed instructions and data
stored in CPU caches(faster access
than DRAM)

● Registers in CPU provide temporary
storage, e.g.,hold operands

Secondary Storage Devices

7

Memory/Storage Hierarchy

● Hierarchy of storage elements which store instructions and data
○ CPU registers (small number, accessed in <1 nanosec)
○ Multiple levels of CPU caches (few MB, 1-10 nanosec)
○ Main memory or RAM (few GB, ~100 nanosec)
○ Hard disk (few TB, ~1 millisec)

● Hard disk is non-volatile storage, rest are volatile
○ Hard disk stores files and other data persistently

● As you go down the hierarchy, memory access technology becomes cheaper,
slower, less expensive

● CPU caches transparent to software, managed by hardware
○ Software only accesses memory, doesn’t know if served from cache or DRAM

8

Memory/Storage Hierarchy

On CPU

9

Memory/Storage Hierarchy

10

Memory/Storage Hierarchy

Register Cache RAM Flash Disk Hard Disk

11

Parts of Program Memory

● The memory of a running program in DRAM has the following components
○ Compiled code (instructions)
○ Compile-time data (global/static variables)
○ Runtime data on stack (function arguments,local variables, ...)
○ Runtime data on heap (dynamically allocated memory via malloc, ...)

● All instructions and data are assigned memory addresses, based on their
location in memory

● Main memory contains user programs + code/data of OS

12

Parts of Program Memory

13

Example: Memory Allocation

● When is memory allocated for the
various parts of this program?
○ Memory for global variable “g” allocated

when ?
○ Memory for function arguments and local

variables (a, b, x,y, z, ...) ?

int g;

int increment(int a){
int b;
b = a + 1;
return b;

}

main (){
int x, y;
x = 1;
y = increment(x);

int *z = malloc(40);
}

14

Example: Memory Allocation

● When is memory allocated for the
various parts of this program?
○ Memory for global variable “g” allocated

when executable loaded into memory at
start of execution

○ Memory for function arguments and local
variables (a, b, x,y, z, ...) allocated
(“pushed”) on stack when the
corresponding function is called

● Why not allocate memory at start of
program?

int g;

int increment(int a){
int b;
b = a + 1;
return b;

}

main (){
int x, y;
x = 1;
y = increment(x);

int *z = malloc(40);
}

15

Example: Memory Allocation

● When is memory allocated for the
various parts of this program?
○ Memory for global variable “g” allocated

when executable loaded into memory at
start of execution

○ Memory for function arguments and local
variables (a, b, x,y, z, ...) allocated
(“pushed”) on stack when the
corresponding function is called

● Why not allocate memory at start of
program?
○ Because we do not know if/how many

times the function will be called at runtime
○ Function variables “popped” from stack

when function returns

● Memory requested dynamically via
malloc is allocated on the heap at
runtime, when malloc is invoked

int g;

int increment(int a){
int b;
b = a + 1;
return b;

}

main (){
int x, y;
x = 1;
y = increment(x);

int *z = malloc(40);
}

16

Pointers and addresses

● A pointer variable contains the memory address of another variable

● Note that these addresses are only logical addresses, and not the actual
physical addresses in DRAM (why? Will cover later)

● Pointer variables contain space to only store the address, and the variable
being pointed to must be declared/allocated separately

● Ensure pointer contains valid address before accessing it

/* Assuming an integer named x has already been declared, this code sets the value
of x to 8. */

ptr = &x; /* initialize ptr to the address of x (ptr points to variable x) */
ptr = 8; / the memory location ptr points to is assigned 8 */

8ptr: Addr of x x:

17

Stack vs Heap

● Functions like malloc allocate
memory on heap and return start
address of allocated chunk

● This heap address is stored in a
pointer variable, which may be a
local variable in a function, and
hence located on the stack

● Dynamically allocated memory
onheap must be explicitly freed up
(in languages like C), else memory
leak
○ Stack memory automatically

popped when function returns

int *arr;
char *c_arr;

/* allocate an array of 20 ints on the heap*/
arr = malloc(sizeof(int) * 20);

/* allocate an array of 10 char on the heap*/
c_arr = malloc(sizeof(int) * 10);

ptr: Addr of heap

c_arr: Addr of heap

Stack Heap

0 1 2 19

0 1 2 9

...

...

18

Next Class We Will Talk About

● What happens on a function call ?
● Role of OS in running a process
● Concurrent execution & CPU virtualization
● Context Switching
● User Mode and Kernel Mode
● System Calls
● Interrupts

CREDITS: This presentation template was created by
Slidesgo, including icons by Flaticon, and
infographics & images by Freepik

Please keep this slide for attribution

19

Happy
Learning !

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

