
Towards Generating a Robust, Scalable and

Dynamic Provenance Graph for Attack Investigation

over Distributed Microservice Architecture

Utkalika Satpathy, Harsh Borse, Sandip Chakraborty

Department of Computer Science and Engineering, IIT Kharagpur, India

Email: utkalika.satapathy01@kgpian.iitkgp.ac.in, harshzf2@gmail.com, sandipc@cse.iitkgp.ac.in

Abstract—In recent years, detecting sophisticated attacks in
distributed microservice environments has become increasingly
challenging, mainly due to containerization, which adds another
dimension of complexity for collecting the system logs and
the lack of applications designed with known vulnerabilities
for reproducibility and experimentation. This paper presents
a framework called µProv for generating robust, scalable, and
dynamic provenance graphs to aid in attack investigation over
distributed microservice architectures. Our approach captures
fine-grained, system-level interactions across microservices lever-
aging eBPF and constructs dynamic runtime provenance graphs
representing the causal relationships between processes, files, and
network activities. We integrate real-world attack scenarios with
known vulnerabilities into our system to evaluate its effectiveness.
Through extensive empirical analysis, we demonstrate that µProv

offers improved accuracy, scalability, and granularity compared
to traditional logging methods.

Index Terms—microservices; APTs; provenance; distributed

I. INTRODUCTION

Modern large-scale distributed applications rely on

microservice-based architecture [1], [2] due to its flexibility,

scalability, and modular deployment, thus offering usability,

robustness, and fault tolerance from the service management

perspective. However, such architectural paradigm also

introduces new attack surfaces [3]–[5], enabling sophisticated

attack vectors, such as Advanced Persistent Threats

(APTs) [6], [7] where a group of attackers can conduct

large-scale targeted intrusion by exploiting the distributed

and loosely-coupled nature of microservices, thus launching

stealthy multi-step attacks that traverse multiple services and

hosts, often remaining undetected for extended periods [7].

Traditional security approaches fail to detect such attacks due

to their inability to correlate low-level system events across

the hosting environments and the higher-level application

activities across a distributed environment. Therefore,

developing an observability framework across distributed

microservices is essential to detect and investigate such attack

vectors in real-time.

The classical approaches for runtime attack investigation

use system provenance graphs [8]–[15], where a dynamic

graph structure captures the correlation across various system

and application events, indicating the flow of execution of

the underlying application. Sophisticated machine and deep

learning (ML/DL) techniques [10], [12], [16], [17] have been

developed to identify possible attack vectors over a runtime

provenance graph. However, such existing methods of attack

investigation fall short for distributed microservices-based

applications because of the following reasons.

(1) Correlating logs across hosts. Microservices may span

multiple hosts; thus, a single request can trigger a chain of

interactions across several hosts. However, the existing log-

ging framework treats every host independently and in silos.

Therefore, generating runtime provenance becomes difficult as

the logs from individual hosts need to be analyzed manually

to correlate various application and system-level events.

(2) Semantic gap between different layers of logs. APTs

are multi-stage attacks that typically span across both the

application as well as the infrastructure. Thus, the detection of

APTs needs to extract the correlation across the application-

generated events and the system (OS-level) events. Notably,

microservice-based applications use various levels of abstrac-

tion and sandboxing, involving OS-level virtualization (virtual

machines), software virtualization (containers), and service

virtualization (web assembly). The existing logging tools fol-

low different semantics at different sandboxing layers. For ex-

ample, containers use a separate process ID (PID) namespace;

thus, the PID of a containerized application may be the same

as the PID of a system-level process. Consequently, correlating

the events from different namespace hierarchies becomes

challenging when constructing the runtime provenance graph.

(3) Lack of benchmarking events and datasets. Given

that existing logging mechanisms fall short of capturing the

correlation across various application and system events dur-

ing APTs, there is a lack of proper benchmarking methods

and datasets to build up a generic robust model for APT

investigation and attack detection. This particularly limits the

existing literature on provenance-based analysis as the core of

such solutions, i.e., generating the provenance graph, needs a

revisit. Towards this, applications often lack the complexity to

simulate multi-stage attacks exploiting existing standards such

as CVEs (Common Vulnerabilities and Exposures1) and CWEs

(Common Weakness Enumerations2), limiting the evaluation of

detection systems in realistic, vulnerable environments.

Considering these challenges, we argue that designing a

1https://www.cve.org/ (Accessed: November 14, 2024)
2https://cwe.mitre.org/ (Accessed: November 14, 2024)

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

566979-8-3315-3119-5/25/$31.00 ©2025 IEEE

20
25

 1
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
O

M
m

un
ic

at
io

n
Sy

st
em

s a
nd

 N
ET

w
or

ks
 (C

O
M

SN
ET

S)
 |

97
9-

8-
33

15
-3

11
9-

5/
25

/$
31

.0
0

©
20

25
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

O
M

SN
ET

S6
39

42
.2

02
5.

10
88

56
39

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

sophisticated, robust, lightweight runtime attack detection for

distributed sandboxed microservices-based applications first

needs a method to generate a scalable, environment-sensitive,

and dynamic provenance graph architecture by correlating the

application and system-level events generated over multiple

hosts. As existing logging mechanisms fail to capture such

dependency and correlation, we need an inclusive observ-

ability framework to dynamically capture and filter out the

essential event information from the sandboxed microservices

and the host platforms and then construct the runtime prove-

nance graph. Considering such requirements, in this paper,

we present µProv, an inclusive observability and provenance

framework that captures the dependency and correlation from

application and system events across various hosts and then

generates the runtime provenance graph dynamically on the

fly. With a proof of concept (PoC) microservice-based appli-

cation and state-of-the-art ML/DL-based methods for attack

investigation over provenance graph-based architecture, we

show that µProv can detect attacks more accurately and faster

compared to the scenario when existing logs are used to

generate a provenance graph. In summary, our contributions

to this paper are as follows.

(1) Custom eBPF-based logging solution: The core of

µProv uses a novel, low-overhead logging solution based

on the extended Berkeley Packet Filters (eBPF) [18], [19],

designed explicitly for distributed microservice environments.

This tool enhances the granularity and efficiency of system call

monitoring in complex, containerized applications and helps

correlate the application-generated event logs with the system

logs. Although existing solutions like [20] have shown the

efficacy of eBPF to observe microservices, they are limited

to extracting various performance metrics. In contrast, we

develop a holistic solution using eBPF to capture correlations

across application and system events that are useful for dy-

namic runtime provenance graph generation.

(2) Extracting dynamic provenance graphs: µProv leverages

provenance graphs constructed from low-level system events

to detect vulnerabilities while effectively illustrating the causal

relationships between processes, file accesses, and network

activities, providing a holistic view of system behavior. By

tracing the lineage of events, µProv can identify anomalous

patterns indicative of multi-stage APT attacks, thereby reveal-

ing attack sequences that conventional methods may overlook.

(3) Vulnerability integration in microservices and dataset

generation: To tackle the issue of inadequate datasets, we have

created a hybrid dataset that integrates real-world microser-

vice logs with synthetically injected attack patterns. For this

purpose, we have developed “PicShare”, a PoC microservice

web application that enables users to upload, view, and receive

picture recommendations. We have designed an emulation

framework to benchmark APTs over microservice-based appli-

cations by integrating the PoC application with vulnerabilities

drawn from CVEs and CWEs, which can help not only to

evaluate µProv but also provide a framework for the research

community to emulate sophisticated attacks over large-scale

microservice-based architecture.

(4) Empirical evaluation & performance-accuracy trade-

off analysis: We empirically analyze various attack scenar-

ios, identifying key indicators of microservice attacks. This

analysis highlights the main factors distinguishing normal

behavior from attacks while revealing the current limitations

of detection methods. We compare µProv’s performance with

Tracee, an eBPF-based logging framework, in generating

system provenance to detect microservice-based attacks. We

observe that µProv can help classical ML-based attack inves-

tigation methods detect attacks over distributed microservices

with better accuracy and granularity while providing a scalable

and real-time framework for attack investigation.

II. RELATED WORK

This section presents an overview of existing research and

approaches in attack investigation, particularly over microser-

vices, focusing on the detection and provenance of APT

attacks. Among the existing works, ATLAS [21] introduced

causality analysis on heterogeneous logs using NLP and ML

to mitigate alert fatigue for analysts by constructing complete

attack stories with high accuracy. Similarly, the authors in [22]

designed a specialized Attack Investigation Query Language

(AIQL) and data model to express key behaviors efficiently.

As discussed, bridging system and application-level contexts

is critical for holistic attack investigation. In this direction,

OmegaLog [23] pioneered universal provenance to encode

causal dependencies across layers through program control

flow integrity. In a similar line, in [24], the authors have

proposed an approach to tackle the complexity of large

dependency graphs by assigning discriminative weights and

propagating impacts to filter insignificant edges. In [25], the

authors have developed detection schemes for cyber-physical

multi-agent systems using event-triggered communication that

reduces unnecessary communication and allows agents to

achieve fault diagnosis independently, even if neighbor infor-

mation is compromised. Advanced ML techniques have also

gained traction for enhancing detection, pattern recognition,

and reconstruction of security attacks over distributed applica-

tions. In this line, Deepro [9] employs graph neural networks

on provenance graphs to identify APT campaigns based on

data dependencies. AttRSeq [26] use attention-based LSTM

models to learn attack patterns from causal relation sequences.

In [27], the authors have combined causal graphs with deep

learning for predictive APT analysis by modeling evolving

malicious entity interactions. Similarly, ANUBIS [8] leverage

Bayesian neural networks for high-fidelity predictions and

explainable provenance of security attacks on microservice-

based applications. Although these approaches have utilized

a provenance-based approach for large-scale attack detection

on microservices, however, they primarily look at individual

microservices in silos or perform host-based system prove-

nance analysis. In contrast, the real-time APT attacks trigger

a chain of interactions across microservices, which needs

runtime analysis of the whole system provenance rather than

the provenance of individual microservices or hosts.

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

567

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

Application sandboxing is another significant challenge

in microservice provenance, as discussed earlier. Traditional

approaches, such as Linux Audit [28], offer limited visi-

bility into sandboxed environments and struggle to capture

critical sandbox-specific system events. Some prior research

has focused on attack detection using only application-layer

logs [29], while others, like [30], rely on analyzing system call

traces from Linux applications in monolithic data centers. Re-

cent works [7], [11], [12], [31]–[33] have highlighted the po-

tential of data provenance, which offers more comprehensive

context than raw system audit logs, for detecting host-based

attacks. The enriched context provided by data provenance

is beneficial for distinguishing persistent malicious activities

from benign ones [34]. However, these techniques are not well-

adapted for distributed microservice environments. State-of-

the-art provenance frameworks such as [13], [14], [35], etc.,

are primarily designed to collect logs from applications run-

ning directly on the host kernel. However, due to sandboxing,

an additional layer of abstraction complicates the extraction

of system calls, as system events triggered within the sandbox

environment are more challenging to capture.

III. DESIGN GOALS & SYSTEM OVERVIEW

Consider a distributed photo-sharing application built on

a microservices architecture. A user action, such as photo

uploading, triggers multiple interactions between services like

user authentication, access control, and database management.

Typically, these services generate specific sequences of system

calls and events recorded in the logs. However, an attacker

might exploit a vulnerability in the upload service by injecting

a malicious PHP script that performs Remote Code Execution

(RCE) [36]. Notably, when analyzed in isolation, this attack

could appear as part of the normal flow. However, by cor-

relating logs across multiple hosts, the system may be able

to identify irregularities in system call sequences. Our system

architecture must meet the following design requirements to

detect such multi-stage attacks within distributed microservice

environments.

G1: To design and deploy a logging module within the

host OS kernel that operates in an application-agnostic

manner and generates a causally consistent stream of

log messages across the hosts in distributed systems.

The causally-consistent log messages [37] should be able

to capture the dependency across various system and

application events by connecting and correlating them

across the hosts.

G2: Our system should enable dynamic and incremental

creation of provenance graphs that capture the causal

relationships between system calls and events.

G3: Our framework should enable real-time detection of

anomalous activities using machine learning models

trained on system call provenance graphs.

As illustrated in Fig. 1, µProv consists of three key com-

ponents to achieve the above design goals: (1) the Logging

Framework, deployed on each host, responsible for ensuring

C
o

n
ta

in
e

rs
C

o
n

ta
in

e
rs

Host1

Host2

C
o

n
ta

in
e

rs

Host3

eBPF

Logging
Framework

Data Preparation

Training Phase

Production Phase

Unified Logs

Provenance Graph

Unified Logs

Provenance Graph

Preprocessing and

Feature Extraction

Feature Vectors

(Attack or Benign)

Feature

Extraction

Feature

Vectors

Attack

Detection

Model
Training

Trained

Detection
Model

Feature

Extraction

Detection Results

(Attack / Benign)

Attack Provenance

Generation

Fig. 1: µProv’s Architecture

the causal consistency of log messages generated by microser-

vices and aggregating these logs across hosts while preserving

causal relationships; (2) the Provenance Graph Generator that

dynamically constructs provenance graphs from the collected

logs; and (3) the Machine Learning Module that analyzes the

graphs in real-time to detect potential attacks.

IV. SYSTEM COMPONENTS

We next discuss various components of µProv in detail.

A. eBPF-based Logging Framework

We propose a logging framework leveraging eBPF [19]

that collects system and application logs to generate a unified

causally ordered log from different microservices running in a

distributed architecture. In this section, we briefly discuss the

key components of the framework, including log collection,

preprocessing, and causal ordering mechanisms. Our Logging

framework leverages eBPF to deploy its logging module

directly within the host OS kernel, as shown in the Fig. 2,

in an application-independent manner, producing a causally-

ordered global log file, L. Using eBPF, custom code known as

probes can be injected into specific kernel hook points, called

tracepoints. This allows the kernel’s capabilities to be extended

safely and efficiently at runtime without modifying the kernel

source code or loading kernel modules. As illustrated in

Fig. 2, our system consists of two main components: (1)

The Logging Container, which runs on each host to ensure

causal consistency among the log messages generated by

microservices running on that host, and (2) The Log Collector

Container, which gathers log messages from multiple hosts

while preserving causal relationships. The Collector subse-

quently streams these log messages to the Provenance Graph

Generator, which incrementally and dynamically creates the

provenance graph, as outlined in Algorithm 1 (discussed in

the subsequent subsection).

Kernel

Code

handling
syscalls

System Calls

Logging

Container

Service

Container

sys_enter

sys_exit

start events

User Space

Kernel

Store data about syscall

write data about syscall

syscall()

Log Collector

Container

Read from events map

Fig. 2: eBPF-based Logging Framework

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

568

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

1 /* Application Log */

2 Host 1 : {"event_context": {

3 "ts": 173989395151310,"datetime": "09:00:51",

4 "task_context": {

5 "host_pid": 314463, "host_tid": 317863,

6 "task_command" : "PhotoService" · · · }},

7 "data": {"lms" : "Photo Service Response: {\n

filename: ’1762071b-9466-48ef-87ae-cd956b34c4fb.png

’,\n message: ’File uploaded successfully’,\n

status: ’success’\n}\n"},

8 "artifacts":{"exe":"/usr/local/bin/PhotoService"}}

9 Host 2 : { · · · "task_context" : { "host_pid" : 1532108,

"host_tid" : 1535513, · · · }, "data" : { "lms" :

INFO:app:User user99 registered successfully\n }, "

artifacts":{"exe":"/usr/local/bin/UserService"}},

10 /* System Log */

11 Host 1 : {"event_context": {"ts":XXX,"datetime":"XXX",

12 "syscall_id": 42,"syscall_name": "connect",

13 "task_context": {

14 "host_pid": 314463, "host_tid": 317863, · · · }},
15 "arguments":{"uservaddr":"0x80003","addrlen":16},

16 "artifacts": {"exe": "/usr/local/bin/PhotoService,

"IP":"10.0.2.22","port":"34835"}}

17 Host 1 : { · · · "syscall_name" : "read", "task_context" :

{ "host_pid" : 314463, "host_tid" : 317863, · · ·
"artifacts" : { "exe" : "/usr/local/bin/UserService

", "file_read" : "/var/lib/docker/containers/· · · /
resolv.conf" }}}, · · ·

18 Host 1 : {· · · "syscall_name":"send","task_context":{"
host_pid":314463, "host_tid":317863,· · · }}

19 Host 2 : {· · · "syscall_name":"recv", "task_context":{"

host_pid":1532108, "host_tid":1535513,· · · }},
20

Listing 1: Example of log entries generated using µProv

The proposed logging framework monitors the system-level

events using eBPF probes on system call entry and exit

tracepoints, thus ensuring that all the relevant logs correspond-

ing to a syscall event are generated simultaneously, therefore

preserving the causal context for a microservice running over

a host. Listing 1 shows a sample log snippet from our logging

framework. The log entries are enriched with four categories

of log information: Event Context, Task Context, Arguments,

and Artifacts. To track the system-level events, we configure

kernel-space Tracepoints to hook syscall entry and exit events

by executing eBPF probes. Another critical data structure is

the eBPF Map. These maps are used to exchange data between

the user space and the kernel space. We have used two eBPF

maps: (i) arg map that collects information from tracepoints;

when the syscall entry probe is activated, the current process

and thread IDs (PIDs and TIDs) are stored as the map index,

with the syscall arguments saved as the corresponding values,

and (ii) exec map that stores the executable’s absolute path

during execution, essential for tracing log sources. When the

syscall exit probe triggers, it uses the PID to retrieve process

context from the arg map and appends executable paths.

Entries are added at the start of the process and removed

upon termination to avoid performance issues. Additionally, a

host-specific eBPF ring buffer is maintained to ensure causal

ordering across microservices on a host. The logging container

is deployed as a privileged container to have visibility for

both the container and host PID namespace. To distinguish

logs from different containers, our framework embeds a “Task

Context” in application logs (see Listing 1). This is essential

for separating log contexts across processes in various con-

tainers. In Fig. 3, we illustrate how our framework performs

atomic system event logging to produce causally consistent

logs for microservices operating on a single host. The Log

Collector collects log entries from multiple logging containers.

To maintain causally consistent logging across hosts with

differing clocks, our framework utilizes a “Vector Clock” [38],

implemented in kernel space and triggered by each application

event. The global log file is given input to the Provenance

Graph Generator module to create the runtime provenance

graph for the whole system.

Invoke write() syscall

Generate Application Log

Trigger System Event

Service

Container
Host Kernel

Logging

Container

(Kernel Space)

eBPF Ring

Buffer

Logging

Container

(User Space)

Log Collector

Container

Trigger syscall

entry tracepoint

Execute syscall

Trigger syscall

exit tracepoint

Populate the log data
Populate the log data

Write atomic

log entries

Ensure causal

ordering across hosts

with Host PID, Host

TID & syscall args

with executable file

path of the event

Populate args_map

Populate exec_map

Fig. 3: Atomic System Event Logging

B. Provenance Graph Generator

This component processes the runtime streaming global logs

and converts them into a provenance graph for analysis. The

Provenance Graph Generator uses the global file L to generate

G. A provenance graph G = 〈V,E〉 is a DAG that models

the system log L, maintaining a temporal and causal ordering

of events. Each node v ∈ V is an entity, which is either a

system event or a resource (like open file descriptors), and

the edges E capture the relationship among them. Notably, L
contains interleaved application-level logs and Syslog entries.

The Algorithm takes the log file and parses each log entry

to either retrieve an existing node or create a new one. Each

system call is processed individually, potentially adding new

nodes and edges to the graph. After processing each log entry

i, we maintain and update a mapping Mi to maintain the

relationships between various entities (e.g., processes, files,

sockets). Each edge e ∈ Ei includes a timestamp τ , preserving

the temporal order of system calls.

For a given host system H, let the whole-system log L be a

continuously growing file that records every interaction within

the operating system and its applications. Each entry li =

(ni, nj , sk, t) in L represents a directed edge, where a system

call sk occurs between a source entity ni and a destination

entity nj at a specific time t. The system entities belong to

one of three types: process, file, or socket, and we focus on

21 distinct system calls3 (1 File I/O related: read, write,

open, close, dup, dup2, dup3, openat, unlinkat;

2 Process related: clone, fork, vfork, execve, exit,

exit_group; and 3 Socket related: connect, accept,

3We’ve selected 21 syscalls for our implementation, but more can be added
by defining entry and exit probe behavior in the logging framework.

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

569

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Provenance Graph generated from the global log file (Benign)
for the PicShare application (Fig. 5). The magnified section shows
the causal path across multiple hosts when a new user registers.

bind, send, recv, socket). Each pair of entities and sys-

tem calls is unique; so for any two system calls (ni, nj , relp)
and (nj , ni, relq), it holds that relp �= relq , where rel is

the relation between the two entities (ex., a syscall opens a

file descriptor). The direction of each system call intuitively

represents the flow of information within the system, and each

call uniquely defines a specific flow, ensuring no system call

represents more than one flow.

Incremental Graph Construction: Algorithm 1 shows the

runtime method for incremental provenance graph generation.

Let L = {l1, l2, ..., ln} be the sequence of log entries. We

define the graph Gi = (Vi, Ei) after processing the i-th log

entry, and Mi as the set of mappings at step i. The following

recurrence relations define the incremental construction:

Vi = Vi−1 ∪ V ′
i (1)

Ei = Ei−1 ∪ E′
i (2)

Mi = UpdateMappings(Mi−1,M
′
i) (3)

where V ′
i , E′

i, and M′
i are the new nodes, edges, and mapping

updates produced by processing the ith log entry. For each

system call s, we define a function:

fs : (V ×Gi−1 ×Mi−1 × τ) → (V ′
i × E′

i ×M′
i) (4)

Fig. 4 shows a sample output of the runtime Provenance Graph

Generation Algorithm. The magnified area shows the causal

path for when a new user registers; it goes through the user

service running on Host-1 and the information (username and

password) stored in the MySQL database running on Host

0). The rhombus shows the corresponding application logs for

generating the system call path. The runtime attack detection

module can extract the features from this graph to train ML

models to detect possible security attacks, as we discussed

next with a PoC application.

V. PROOF-OF-CONCEPT IMPLEMENTATION

As discussed earlier, a key challenge in attack detection

research is that most open-source benchmarking lacks the

complexity to simulate multi-stage attacks that exploit vulner-

abilities commonly identified by CVEs and CWEs. Therefore,

we develop a microservice-based application named PicShare

(refer Fig. 5) to emulate real-world vulnerabilities for dis-

tributed microservices.

Algorithm 1: Provenance Graph Generation

1 Procedure Main
Input: L: Global log file

Output: G = (V,E): Provenance graph

// Initialization of variables

2 V ← {vexit, verror}, E ← ∅;

3 Mp,Mf ,Mc,Mn ← ∅;

/* Mp: Process mapping (host_id, host_pid,

host_tid) → Node */

/* Mf: File descriptor mapping (host_id,

host_pid, host_tid,fd) → Node */

/* Mn: Network Connection mapping (IP, port) →
Node */

/* Mc: Clone mapping (host_pid, retval, host_tid,

type(parent or child)) → Node */

4 foreach l ∈ L do

/* l is a syscall log entry with fields:

host,pid,tid,ts,syscall,cgroup_id,... */

5 (h, p, t, τ, s, c,m, pns) ← ExtractInfo(l);

6 v ← GCPNh, p, t, c,m, pns,Mp;

7 (V ′, E′,M′) ← ProcessSyscall(s, v,G,M, τ, l);

8 G ← UpdateGraph(G, V ′, E′
);

9 (Mp,Mf ,Mc,Mn) ←
UpdateMappings((Mp,Mf ,Mc,Mn),M

′
);

10 return G

11 Function CreateProcessNode(h, p, t, c,m, pns,Mp)

12 if (h, p, t, c,m, pns) /∈ Mp then

13 v ← CreateNewProcessNode(h, p, t, c,m, pns);

14 Mp[(h, p, t, c,m, pns)] ← v;

15 return Mp[(h, p, t, c,m, pns)]

16 Function ProcessSyscall(s, v,G,M, τ, l)
17 V ′ ← ∅, E′ ← ∅, M′ ← ∅;

18 switch s do

19 case accept4 do

20 (V ′, E′,M′) ← ProcessAccept4(v, l, G,M, τ);

21 case read do

22 (V ′, E′,M′) ← ProcessRead(v, l, G,M, τ);

23 case openat do

24 (V ′, E′,M′) ← ProcessOpenAt(v, l, G,M, τ);

25 return (V ′, E′,M′)

26 Function UpdateGraph(G, V ′, E′
)

27 V ← V ∪ V ′;

28 E ← E ∪ E′;

29 return G

30 Function UpdateMappings((Mp,Mf ,Mc,Mn),M
′
)

31 foreach (k, v) ∈ M′ do

32 switch type of k do

33 case Process key do

34 Mp[k] ← v;

35 case File descriptor key do

36 Mf [k] ← v;

37 case Clone key do

38 Mc[k] ← v;

39 case Network key do

40 Mn[k] ← v;

41 return (Mp,Mf ,Mc,Mn)

// Example of a specific syscall processing function

42 Function ProcessAccept4(v, l, G,M, τ)

43 V ′ ← ∅, E′ ← ∅, M′ ← ∅;

44 fd ← l.arguments.fd;

45 ip ← l.artifacts.IP ;

46 port ← l.artifacts.port;
47 if (ip, port) /∈ Mn then

48 vnet ← CreateNetworkNode(ip, port);

49 V ′ ← V ′ ∪ {vnet};

50 M′[(ip, port)] ← vnet;

51 vnet ← Mn[(ip, port)];
52 E′ ← E′ ∪ {(v, vnet, ”accept4”)};

53 M′[(v.pid, fd)] ← vnet;

54 return (V ′, E′,M′)

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

570

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Injected Vulnerabilities for Attack Emulation

Label Attack Scenario ID Attack Type Vulnerability Description
Affected

Microservices

Expected

Log Patterns

L8

SSTI-01

CVE-2024-29686
Server-side Template Injection

Remote attacker to execute arbitrary code

via a crafted payload
ProfileService

Received request for username:

<%= 7 * 7 %>

L9

PATH-TRAV-001

CVE-2019-5418
Path Traversal

Improper input sanitization allows access

to files outside the intended directory

and remote code execution
PhotoService

Access attempts to sensitive files,

unexpected file access errors

L10,L11

SQL-INJ-001

CVE-2014-3704
SQL Injection

SQL queries are constructed using string

interpolation, allowing user input to

manipulate the query structure

UserService

PhotoService

SQL syntax errors,

unexpected query results,

L12

INS-FILE-001

CVE-2020-36112

Insecure File

Upload

Improper validation of uploaded files

allows remote code execution
PhotoService

Unusual file types,

file handling errors

A. PicShare Application: An Attack Emulation Platform

The application implements an end-to-end service for up-

loading pictures, as well as getting recommendations and

notifications on the activity of the pictures. PicShare is a dock-

erized microservice application and supports Docker Swarm

for running in multiple hosts. We emulate various attacks on

this application, as summarized in Table I.

API Gateway
Frontend

(html, js)
Client

UserService PhotoService
Recommendation

Service
Notification

Service
AnalyticsService

UserDB

MySQL
PhotoDB

MySQL
RecommendationDB

MongoDB

 Notification Cache
Redis

 AnalyticsDB

ElasticSearch

HTTP

Requests

/api/users/* /api/photos/* /api/recommendation/* /api/notifications/* /api/analytics/*

ProfileService

/api/profile/*

API Services

Fig. 5: The architecture of the PicShare Service for uploading,
sharing, and viewing photos.

Functionalities: In the application, users interface with a

node.js front-end to register and log into their account. Once

logged in, they can upload a photo from their user end and

view a particular user’s photos. The microservices are written

in Python Flask, while the back-end databases consist of a

relational database MySQL, persistent MongoDB instances,

and a Redis DB. It contains the following microservices: (1) a

front-end server implemented using NodeJS-EJS Templating

that serves users’ requested HTML pages. It handles the

application’s presentation layer, facilitating dynamic content

rendering. (2) PhotoService implemented using Python Flask

to upload and view photos. This component handles the back-

end processing necessary for uploading images securely and

efficiently. (3) UserService to register and log in to the account.

(4) RecommendationService An open-source unified analytics

engine utilized for the recommendation engine of PicShare.

(5) A NotificationService (using Flask) enables interactions

related to likes, dislikes, and other user preferences. It provides

a streamlined interface for communication with the recommen-

dation engine. (7) ProfileService implemented using NodeJS to

view the user profile. (8) AnalyticsService (implemented using

ElasticSeach): A visualization tool integrated with ElasticDB,

employed by application developers to visualize the perfor-

mance metrics of the component. This application exposes

7 endpoints (downloadphotos, getprofile, getrecommendation,

loginuser, registeruser, updaterecommendation, viewphoto) to

users labeled as ‘benign’ {L1, L2, L3, L4, L5, L6, L7}.

Attack Execution: In the context of microservices-based

environments, applications are divided into smaller services,

each potentially vulnerable to various types of attacks: (1)

Communication/Network Attacks, such as Denial of Service,

Man-in-the-Middle, Replay, etc., (2) Service Level Attacks,

such as Injection (such as SQL injection and Shell Injection),

Broken Access Control, Cryptographic Failures, Server-Side

Request Forgery (SSRF), etc., (3) Virtualization Attacks, such

as RCE in the host, Unauthorized Access, Container Malware,

etc. We have emulated a subset of these attacks on the

PicShare applications, as shown in Table I, each identified

with its corresponding CVE and CWE identifiers and catego-

rized attack types labeled as {L8, L9, L10, L11, L12}. These

vulnerabilities are selected based on their compatibility with

the targeted versions and components of the system.

B. Attack Detection Techniques

User requests exhibit diverse behaviors that trigger distinct

system call sequence signatures during execution. Our objec-

tive is to analyze these interaction patterns and signatures to

differentiate between benign and malicious requests as well

as between different types of malicious requests. Given that

user-facing applications often include multiple operations (or

endpoints), we treat each request type as a separate class,

resulting in 12 different types. This allows us to approach

attack detection as a multiclass classification problem with 7
benign and 5 malicious request classes. Feature Extraction:

We extract relevant features from both log data L and the

provenance graphs G. Initially, we construct a provenance

graph from the global log file for each request, resulting in

a set of graphs Gi, where each graph is labeled according to

its respective class as either benign or attack, with its specific

type Li ∈ {L1, L2, . . . , L12} (refer to Section V). From each

graph Gi, we derive basic graph-related features, such as

the number of nodes, edges, average degree, density, degree

centrality, number of connected components, node connec-

tivity, edge connectivity, in-degree and out-degree centrality,

and degree associativity. Additionally, we extract specialized

features from the provenance graphs, including the number

of system calls, system call frequencies, system call counts,

and their return values. While graph-related features help

us efficiently detect malicious requests, provenance-specific

features allow us to identify subtle changes in system call

sequences that could indicate small-scale attacks, which might

otherwise resemble benign requests. Model Selection: We ex-

plore standard supervised multiclass classification techniques

commonly employed in traditional frameworks for detecting

various benign and attack scenarios [10], [14]. Specifically, we

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

571

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

investigate classification models such as K-Nearest Neighbors

(KNN) [39], Support Vector Machines (SVM) [30], [39], Ran-

dom Forest [7], and Artificial Neural Networks (ANN) [40],

as these models have been shown to perform well with high-

dimensional numerical features. We implement versions of

these ML models for the multiclass classification task, training

each model with labeled features extracted from the graphs.

All models were trained on the same set of features and

their vectorized representations. Specifically, for each graph Gi

along with the corresponding label Li, we extract all relevant

features and represent them as a one-dimensional vector, where

the length of the vector corresponds to the total number of

features extracted. These feature vectors are then used as input

for training and testing the attack detection models.

VI. EVALUATION

We evaluate µProv with the following objectives: (1) the

accuracy in correctly identifying the attack scenarios in com-

parison to Tracee4, a widely used system auditing framework

that captures runtime syscall execution logs using eBPF, and

analyzing various scenarios in terms of performance-accuracy

trade-off, and (2) the runtime resource consumption of µProv

in comparison to Tracee.

A. Experimental Setup

The source code, documentation, and experimental con-

figuration scripts for our implementation have been open-

sourced5. We used C with the libbpf library to create eBPF

probe programs, identifying 21 configurable syscalls for which

we developed separate eBPF probes. For the kernel-space

component, we set the eBPF ring buffer size to 1MB with

a 50ms polling interval, forwarding logs to the Logging

collector. Additionally, we reserved 2MB for the exec map

and 64KB for the args map. Provenance Graph Generator is

a Python program with approx 880 lines of code.

To assess the effectiveness of our framework, we employed

a vulnerable photo-sharing microservice application, PicShare,

consisting of 13 distinct microservices. The main user inter-

action endpoints include the UserService (US), PhotoService

(PS), RecommendationService (RS), and ProfileService (PS).

We developed an automation script that generates 1000 re-

quests, spaced 5 seconds apart, targeting both benign and

attack scenarios across services with known vulnerabilities

(refer to Table I). In total, we gathered logs for 12 scenarios

(7 benign and 5 attack scenarios as labelled as L1 to L12).

To evaluate the framework’s ability to collect logs across

multiple hosts, we deployed the microservices on 10 virtual

machines (VMs) configured as edge computing hosts. Each

VM hosted several containerized microservices, managed by

Docker Swarm, and was equipped with Ubuntu 22.04 SMP,

the Linux 6.5.0-41-generic kernel, 16 vCPU cores, and 64GB

of RAM. One VM serve as the Docker Swarm manager, while

the remaining VMs operated as worker nodes.

4https://github.com/aquasecurity/tracee (Accessed: November 14, 2024)
5https://anonymous.4open.science/r/MicroserviceProv-76CE/README.md

B. Results

1) Attack Detection Performance: We have compared the

performance metrics (Accuracy, Precision, Recall, and Micro-

F1 Score) of four machine learning models (KNN, SVM, Ran-

dom Forest, and ANN) for detecting attacks using Tracee and

µProv as shown in Table II, Random Forest shows the highest

performance in µProv, achieving an accuracy of 87.78%, a

precision of 87.97%, and a Micro-F1 Score of 87.64%. In

comparison, its performance with Tracee is significantly lower,

with an accuracy of 52.80%. These results indicate that µProv

consistently outperforms Tracee in every metric due to its

causally-ordered comprehensive logging information.

TABLE II: Performance Comparison for our Framework

Model

Name

Tracee µProv

Accuracy Precision Recall Micro-F1 Score Accuracy Precision Recall Micro-F1 Score

KNN 48.27 47.76 46.66 46.18 70.36 70.39 71.21 70.61

SVM 38.69 42.23 40.18 39.36 83.14 81.14 80.25 80.12

Random

Forest
52.80 54.93 52.80 53.10 87.78 87.97 87.78 87.64

ANN 46.32 56.54 48.81 48.72 83.05 89.90 90.18 88.21

Fig. 7 and Fig. 8 show the confusion matrix of different

machine learning models (KNN, SVM, Random Forest, and

ANN) using Tracee and µProv in identifying attack sce-

narios across 12 classes of ’benign’ and ’attack’ activities.

Across all the models, µProv consistently outperforms Tracee

in classifying attack and benign events. This highlights the

effectiveness of µProv’s causally-ordered logs, which provide

a richer context for distinguishing. Also, it shows Random

Forest exhibits the best overall performance for Tracee and

µProv, as demonstrated by the higher diagonal values in the

matrix. Tracee fails to classify attacks like SQL Injection

and RCE, with confusion spread across neighbors. This is

due to the similarity in the attack signature and overlapping

patterns in the system call sequences between these events,

particularly when they are evaluated on individual hosts in

silos. In comparison, the causality-aware logging provided by

µProv provides a robust whole-system provenance with better

classification accuracy for these scenarios.

We also measure each model’s False Positive (FP) and

False Negative (FN) using Fig. 7 and Fig. 8. FP is when

a benign event is misclassified as an attack, or one type

of attack is misclassified as another. FN is when an attack

is classified as benign activity or a different attack. Tracee

has higher rates of FP and FN. As shown in (a), the KNN

model in Tracee shows significant FP rates for benign activity

classified as an attack. In contrast, µProv improves FP rates

across all models with fewer benign activities misclassified

as attacks. Also, Tracee exhibits higher FN rates across all

models. For example, the SQL injection Attack (User) is often

misclassified as benign activities Get Profile or View Photo

when the SVM model is used over Tracee-generated logs.

On close inspection, we observe that the syscall-execution

sequences for these activities are similar when observed on

individual hosts. As Tracee fails to provide a holistic view

of the entire system, such differences are not observed when

the provenance graph is constructed using Tracee-generated

logs. In contrast, µProv reduces the number of FP (benign

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

572

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

1 - Download Photo 2 - Get Profile 3 - Get Recommendation 4 - Login User 5 - Register User 6 - Update Recommendation

7 - View Photo 8 - Node EJS Attack - Profile 9 - RCE Attack - Photo 10 - SQL Injection Attack - Photo 11 - SQL Injection Attack - Users 12 - Upload PHP Attack - Photo

(a) Tracee - KNN (b) Tracee - SVM

(c) Tracee - Random Forest (d) Tracee - ANN

Fig. 7: Confusion Matrix for Tracee (%)

activity falsely detected as attacks) and FN (missed attacks) by

combining the correlated logs from individual hosts, leading

to better overall classification accuracy for attack detection.

We compare the attack detection time between µProv and

Tracee. For Tracee, the process includes generating logs

across hosts, pre-processing, storing them centrally, generating

a provenance graph, and running the pre-trained detection

model. µProv, however, streams logs directly to a central

server, eliminating the need for relevant log retrieval. We

observe that on average, µProv detects attacks in 5.2 ± 0.5
seconds while Tracee takes 10.2±0.6 seconds from the attack

occurrence, making µProv ∼ 50% faster.

2) Resource Utilization: To evaluate the resource overhead,

we have used an open-source monitoring tool developed by

Google to monitor container, cAdvisor6. As shown in Fig. 9a,

the memory overhead of the logging framework of µProv

remains stable across 10K, 20K, and 30K requests, around

10MB, whereas Tracee takes around 200MB. Fig. 9b shows

the CPU utilization overhead by µProv and Tracee. The results

shown in Fig. 10 describe the properties of the generated

provenance graph for µProv and Tracee across 12 different

events. As shown, µProv consistently generates more nodes

and edges than Tracee across all events (although with a

much lower memory footprint than Tracee), indicating a more

detailed and comprehensive provenance tracking approach

with a lower resource consumption footprint.

VII. CONCLUSION

This paper introduces µProv, an application-agnostic frame-

work to capture fine-grained system interactions and construct

6https://github.com/google/cadvisor (Accessed: November 14, 2024)

(a) µProv- KNN (b) µProv- SVM

(c) µProv- Random Forest (d) µProv- ANN

Fig. 8: Confusion Matrix for µProv (%)

(a) Avg. Memory Usage (b) Avg. CPU Utilization

Fig. 9: Average Memory overhead and CPU utilization

(a) No of Nodes Generated per Event (b) No of Edges Generated per Event

Fig. 10: Properties of Provenance Graph

comprehensive provenance graphs, enabling robust tracking

of causal relationships among system entities that help detect

real-time attacks for distributed microservice architecture. Un-

like traditional system call tracing tools used for sandboxing

applications, which often overlook key data, µProv captures

comprehensive execution details that significantly enhance the

ability to trace causal relationships among system entities.

As a future extension, we plan to develop a framework

that further integrates detailed system interactions involving

both execution events and performance counters that capture

the resource consumption by individual microservices, thus

improving the detection of advanced attacks.

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

573

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] T. Cerny, M. J. Donahoo, and M. Trnka, “Contextual understanding of
microservice architecture: current and future directions,” ACM SIGAPP

Applied Computing Review, vol. 17, no. 4, pp. 29–45, 2018.

[2] P. Agarwal and S. Moharir, “On exploiting edge resources for micro-
service based SaaSs,” in 2024 16th International Conference on COM-

munication Systems & NETworkS (COMSNETS). IEEE, 2024, pp. 533–
541.

[3] U. Zdun, P.-J. Queval, G. Simhandl, R. Scandariato, S. Chakravarty,
M. Jelic, and A. Jovanovic, “Microservice security metrics for secure
communication, identity management, and observability,” ACM Trans-

actions on Software Engineering and Methodology, vol. 32, no. 1, pp.
1–34, 2023.

[4] A. Bambhore Tukaram, S. Schneider, N. E. Dı́az Ferreyra, G. Simhandl,
U. Zdun, and R. Scandariato, “Towards a security benchmark for the
architectural design of microservice applications,” in Proceedings of the

17th International Conference on Availability, Reliability and Security,
2022, pp. 1–7.

[5] X. Chen, H. Irshad, Y. Chen, A. Gehani, and V. Yegneswaran, “CLAR-
ION: Sound and clear provenance tracking for microservice deploy-
ments,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 3989–4006.

[6] A. Alshamrani, S. Myneni, A. Chowdhary, and D. Huang, “A survey
on advanced persistent threats: Techniques, solutions, challenges, and
research opportunities,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 2, pp. 1851–1877, 2019.

[7] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “UNICORN:
Runtime provenance-based detector for advanced persistent threats,” in
NDSS Symposium, 2020.

[8] M. M. Anjum, S. Iqbal, and B. Hamelin, “ANUBIS: a provenance graph-
based framework for advanced persistent threat detection,” in Proceed-

ings of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022,
pp. 1684–1693.

[9] N. Yan, Y. Wen, L. Chen, Y. Wu, B. Zhang, Z. Wang, and D. Meng,
“Deepro: Provenance-based APT campaigns detection via GNN,” in
2022 IEEE International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom). IEEE, 2022, pp. 747–
758.

[10] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on

Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[11] A. Goyal, J. Liu, A. Bates, and G. Wang, “ORCHID: Streaming
threat detection over versioned provenance graphs,” arXiv preprint

arXiv:2408.13347, 2024.

[12] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. Rhee, Z. Chen,
W. Cheng, C. A. Gunter et al., “You are what you do: Hunting stealthy
malware via data provenance analysis.” in NDSS, 2020.

[13] A. Gehani and D. Tariq, “SPADE: Support for provenance auditing in
distributed environments,” in ACM/IFIP/USENIX International Confer-

ence on Distributed Systems Platforms and Open Distributed Processing.
Springer, 2012, pp. 101–120.

[14] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Proceedings

of the 2017 Symposium on Cloud Computing, 2017, pp. 405–418.

[15] M. Zipperle, F. Gottwalt, E. Chang, and T. Dillon, “Provenance-based in-
trusion detection systems: A survey,” ACM Computing Surveys, vol. 55,
no. 7, pp. 1–36, 2022.

[16] B. Bhattarai and H. H. Huang, “Prov2vec: Learning provenance graph
representation for anomaly detection in computer systems,” in Proceed-

ings of the 19th International Conference on Availability, Reliability and

Security, 2024, pp. 1–14.

[17] A. Goyal, X. Han, G. Wang, and A. Bates, “Sometimes, you aren’t
what you do: Mimicry attacks against provenance graph host intrusion
detection systems,” in 30th Network and Distributed System Security

Symposium, 2023.

[18] C. Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, “A protocol-independent
container network observability analysis system based on eBPF,” in 2020

IEEE 26th International Conference on Parallel and Distributed Systems

(ICPADS). IEEE, 2020, pp. 697–702.

[19] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, “A framework
for eBPF-based network functions in an era of microservices,” IEEE

Transactions on Network and Service Management, vol. 18, no. 1, pp.
133–151, 2021.

[20] J. Levin and T. A. Benson, “ViperProbe: Rethinking microservice
observability with ebpf,” in 2020 IEEE 9th International Conference

on Cloud Networking (CloudNet). IEEE, 2020, pp. 1–8.
[21] A. Alsaheel, Y. Nan, S. Ma, L. Yu, G. Walkup, Z. B. Celik, X. Zhang,

and D. Xu, “ATLAS: A sequence-based learning approach for attack
investigation,” in 30th USENIX security symposium (USENIX Security),
2021, pp. 3005–3022.

[22] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018,
pp. 113–126.

[23] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “OmegaLog:
High-fidelity attack investigation via transparent multi-layer log analy-
sis,” in Network and Distributed System Security Symposium (NDSS),
2020.

[24] P. Fang, P. Gao, C. Liu, E. Ayday, K. Jee, T. Wang, Y. F. Ye, Z. Liu,
and X. Xiao, “Back-Propagating system dependency impact for attack
investigation,” in 31st USENIX Security Symposium (USENIX Security),
2022, pp. 2461–2478.

[25] L. Liang and S. Liu, “Event-triggered distributed attack detection and
fault diagnosis,” IEEE Transactions on Instrumentation and Measure-

ment, vol. 72, pp. 1–11, 2022.
[26] F. Zhang, R. Dai, and X. Ma, “AttRSeq: Attack story reconstruction via

sequence mining on causal graph,” in 2023 IEEE 3rd International Con-

ference on Power, Electronics and Computer Applications (ICPECA).
IEEE, 2023, pp. 360–364.

[27] H. Liu and R. Jiang, “A causal graph-based approach for apt predictive
analytics,” Electronics, vol. 12, no. 8, p. 1849, 2023.

[28] S. LINUXAG, “Linux audit-subsystem design documentation for linux
kernel 2.6, v0. 1,” 2004.

[29] R. Bronte, H. Shahriar, and H. M. Haddad, “Mitigating distributed denial
of service attacks at the application layer,” in Proceedings of the ACM

Symposium on Applied Computing (ACM SAC), 2017, p. 693–696.
[30] M. Liu, Z. Xue, X. He, and J. Chen, “Scads: A scalable approach using

spark in cloud for host-based intrusion detection system with system
calls,” arXiv preprint arXiv:2109.11821, 2021.

[31] S. M. Milajerdi, B. Eshete, R. Gjomemo, and V. Venkatakrishnan,
“Poirot: Aligning attack behavior with kernel audit records for cyber
threat hunting,” in Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security (ACM CCS), 2019, pp. 1795–
1812.

[32] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy

(SP). IEEE, 2019, pp. 1137–1152.
[33] H. Zhu and C. Gehrmann, “Kub-Sec, an automatic kubernetes cluster

apparmor profile generation engine,” in 2022 14th International Con-

ference on COMmunication Systems & NETworkS (COMSNETS), 2022,
pp. 129–137.

[34] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in network and distributed systems security symposium, 2019.

[35] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy Whole-
System provenance for the linux kernel,” in 24th USENIX Security, 2015,
pp. 319–334.

[36] A. Ibrahim, S. Bozhinoski, and A. Pretschner, “Attack graph generation
for microservice architecture,” in Proceedings of the 34th ACM/SIGAPP

symposium on applied computing, 2019, pp. 1235–1242.
[37] F. Neves, N. Machado, R. Vilaça, and J. Pereira, “Horus: Non-intrusive

causal analysis of distributed systems logs,” in 2021 51st Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks

(DSN). IEEE, 2021, pp. 212–223.
[38] A. Arora, S. Kulkarni, and M. Demirbas, “Resettable vector clocks,”

in Proceedings of the 19th annual ACM Symposium on Principles of

Distributed Computing (ACM PODC), 2000, pp. 269–278.
[39] D. Yuxin, Y. Xuebing, Z. Di, D. Li, and A. Zhanchao, “Feature

representation and selection in malicious code detection methods based
on static system calls,” Computers & Security, vol. 30, no. 6-7, pp.
514–524, 2011.

[40] X. Xiao, Z. Wang, Q. Li, Q. Li, and Y. Jiang, “ANNs on co-occurrence
matrices for mobile malware detection,” KSII Transactions on Internet

and Information Systems (TIIS), vol. 9, no. 7, pp. 2736–2754, 2015.

2025 17th International Conference on COMmunication Systems & NETworkS (COMSNETS)

574

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. Downloaded on March 07,2025 at 17:38:22 UTC from IEEE Xplore. Restrictions apply.

